## Strong acid with strong base

The hydronium ions in an aqueous solution of a strong acid have two sources:
(1) the reaction of the acid with water and
(2) the dissociation of water

In all but the most dilute solutions, however, the contribution from the strong acid far exceeds that from the solvent.

## Strong acid with strong base

## Stages:

$1^{\text {st }}$ step - before beggining titration: the solution contains only strong acid and water, the pH being determined by the dissociation of the strong acid.
$2^{\text {nd }}$ step - before the equivalence-point: in the preequivalence stage, we compute the concentration of the acid from its starting concentration and the amount of base added.
$3^{\text {rd }}$ step - at the equivalence-point: at the equivalence-point, the hydronium and hydroxide ions are present in equal concentrations, and the hydronium ion concentration is derived directly from the ion-product constant for water.
$4^{\text {th }}$ step - after equivalence-point: in the postequivalence stage, the analytical concentration of the excess base is computed, and the hydroxide ion concentration will be equal to (or multiple of) the analytical concentration.

## Example - stoichiometry

Derive a curve for the titration of 100.0 mL of $0.100 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HC} \ell$ with 0.100 mol L-1 NaOH .

Initial questions:

1. Reaction?

$$
\mathrm{HC}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{NaC}_{(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

2. Volume of NaOH at equivalence-point?

$$
\begin{gathered}
n^{o} \mathrm{~mol} \mathrm{NaOH}=n^{o} \mathrm{~mol} \mathrm{HCl} \\
0.100 x V_{\mathrm{NaOH}}=0.100 \times 100 \\
V_{\mathrm{NaOH}}=100 \mathrm{~mL}
\end{gathered}
$$

Initial point
At the outset, the solution is $0.100 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\mathrm{H}_{3} \mathrm{O}^{+}$, and

$$
\begin{gathered}
\mathrm{HC} \ell_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(1)} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}+{\mathrm{C} \ell_{(\mathrm{aq})}^{-}}^{p} \\
p H=-\log \left[H_{3} O^{+}\right]=1.00
\end{gathered}
$$

After addition of 1.00 mL of reagent
The hydronium ion concentration decreases as a result of both reaction with the base and dilution.
$\mathrm{V}_{\mathrm{NaOH}}=1.00 \mathrm{~mL} \Rightarrow \mathrm{n}^{\circ} \mathrm{mol} \mathrm{NaOH}=0.100 \times 0.00100=0.000100 \mathrm{~mol}$

$$
\mathrm{HC}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{NaC} \ell_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

| Initial | 0.0100 | - | - | - |
| :--- | :---: | :---: | :---: | :---: |
| Added | - | 0.000100 | - | - |
| Final | 0.0099 | - | 0.000100 | 0.000100 |

$\mathrm{V}_{\text {tinal }}=\mathrm{V}_{\mathrm{HCI}}+\mathrm{V}_{\mathrm{NaOH}}=100.0+1.00=101.0 \mathrm{~mL}$

$$
\mathrm{V}_{\mathrm{NaOH}}=50.00 \mathrm{~mL} ?
$$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.0099 / 0.1010=0.098 \mathrm{~mol} \mathrm{~L}^{-1} \Rightarrow \mathrm{pH}=1.01$

## Equivalence-point

At the equivalence-point, neither $\mathrm{HC} \mathrm{\ell}$ nor NaOH is in excess, and so the concentrations of hydronium and hydroxide ions must be equal. Substituting this equality into the ion-product constant for water yiels

$$
\mathrm{HC}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{NaC}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

| Initial | 0.0100 | - | - | - |
| :--- | :---: | :---: | :---: | :---: |
| Added | - | 0.0100 | - | - |
| Final | - | - | 0.0100 | 0.0100 |
|  |  |  |  |  |
|  | $p H=-\log \left[H_{3} O^{+}\right]=7.00$ |  |  |  |

After addition of 102.00 mL of reagent
The solution now contains an excess of NaOH , and we can write
$\mathrm{V}_{\mathrm{NaOH}}=102.00 \mathrm{~mL} \Rightarrow \mathrm{n}^{0} \mathrm{~mol} \mathrm{NaOH}=0.100 \times 0.120=0.01020 \mathrm{~mol}$

$$
\mathrm{HC}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{NaC}_{(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

| Initial | 0.0100 | - | - | - |
| :--- | :---: | :---: | :---: | :---: |
| Added | - | 0.01020 | - | - |
| Final | - | 0.00020 | 0.0100 | 0.0100 |

Volume final $=202.00 \mathrm{~mL}$

$$
\left[O H^{-}\right]=\frac{0.0020}{0.2020}=9.90 \times 10^{-4} \mathrm{~mol} \mathrm{~L} \mathrm{~L}^{-1}
$$

## Example - the charge-balance equation

Derive a curve for the titration of 100.0 mL of $0.100 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HC} \ell$ with $0.100 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}$.

The charge-balance equation is given by:
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{Na}^{+}\right]=\left[\mathrm{OH}^{-}\right]+[\mathrm{C} \ell]$
where the sodium and chloride ion concentrations are given by
$\left[\mathrm{Na}^{+}\right]=\frac{V_{\mathrm{NaOH}} c_{\mathrm{NaOH}}}{V_{\mathrm{NaOH}}+V_{\mathrm{HCl}}}$ and $\left[\mathrm{Cl}^{-}\right]=\frac{V_{\mathrm{HCl}} c_{\mathrm{HCl}}}{V_{\mathrm{NaOH}}+V_{\mathrm{HCl}}}$
For volumes of NaOH short of the equivalence-point $\left[\mathrm{OH}^{-}\right] \ll[\mathrm{C} \ell-]$ :
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{C} \ell]-\left[\mathrm{Na}^{+}\right]=\frac{V_{\mathrm{HCl}} \mathrm{C}_{\mathrm{HCl}}}{V_{\mathrm{NaOH}}+V_{\mathrm{HCl}}}-\frac{V_{\mathrm{NaOH}} c_{\mathrm{NaOH}}}{V_{\mathrm{NaOH}}+V_{\mathrm{HCl}}}$
At the equivalence-point, $\left[\mathrm{Na}^{+}\right]=\left[\mathrm{C} \ell^{-}\right]$and
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right] \rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{K_{w}}$
Beyond the equivalence-point, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \ll\left[\mathrm{Na}^{+}\right]$, and the original equation rearranjes to
$\left[\mathrm{OH}^{-}\right]=\left[\mathrm{Na}^{+}\right]-\left[\mathrm{C} \ell^{-}\right]=\frac{V_{\mathrm{NaOH}} c_{\mathrm{NaOH}}}{V_{\mathrm{NaOH}}+V_{\mathrm{HCl}}}-\frac{V_{\mathrm{HCl}} \mathrm{C}_{\mathrm{HCl}}}{V_{\mathrm{NaOH}}+V_{\mathrm{HCl}}}$

## The effect of concentration

TABLE 14-2
Changes in pH during the Titration of a Strong Acid with a Strong Base


## Example

Derive a curve for the titration of 100.0 mL of $0.100 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{H}_{2} \mathrm{SO}_{4}$ with 0.100 mol L-1 KOH.

Initial questions:

1. Reaction?

$$
\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{KOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{K}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

2. Volume of NaOH at equivalence-point?

$$
\begin{gathered}
n^{o} \text { mol } \mathrm{KOH}=2 x n^{o} \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4} \\
0.100 x V_{\text {КOH }}=2 \times 0.100 \times 100 \\
V_{\text {КОН }}=200 \mathrm{~mL}
\end{gathered}
$$

Initial point
At the outset, the solution is $0.200 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\mathrm{H}_{3} \mathrm{O}^{+}$, and

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\imath)} \rightleftharpoons 2 \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{SO}_{4}{ }^{2}{ }^{-}{ }_{\text {aq }} \\
p H=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log (0.200)=0.70
\end{gathered}
$$

After addition of 10.00 mL of reagent
The hydronium ion concentration decreases as a result of both reaction with the base and dilution.
$V_{\text {Kон }}=10.00 \mathrm{~mL} \Rightarrow \mathrm{n}^{\circ} \mathrm{mol} \mathrm{KOH}=0.100 \times 0.00100=0.00100 \mathrm{~mol}$


Initial 0.0100
Added - 0.00100 - -
$\begin{array}{llll}\text { Final } & 0.0095 & 0.000500 & 0.00100\end{array}$
$\mathrm{V}_{\text {final }}=\mathrm{V}_{\mathrm{H} 2 \mathrm{SO}}+\mathrm{V}_{\text {KOH }}=100.0+10.00=110.0 \mathrm{~mL}$
$\mathrm{V}_{\text {Кон }}=50.00 \mathrm{~mL}$ ?
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2 \times(0.0095 / 0.1100)=0.173 \mathrm{~mol} \mathrm{~L}^{-1} \Rightarrow \mathrm{pH}=0.76$

Equivalence-point
At the equivalence-point, neither $\mathrm{H}_{2} \mathrm{SO}_{4}$ nor KOH is in excess, and so the concentrations of hydronium and hydroxide ions must be equal. Substituting this equality into the ion-product constant for water yiels

$$
\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{KOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{K}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

| Initial | 0.0100 | - | - | - |
| :--- | :---: | :---: | :---: | :---: |
| Added | - | 0.0200 | - | - |
| Final | - | - | 0.0100 | 0.0200 |

$$
p H=-\log \left[H_{3} O^{+}\right]=7.00
$$

## After addition of 210.00 mL of reagent

The solution now contains an excess of KOH , and we can write $\mathrm{V}_{\text {KOH }}=210.00 \mathrm{~mL} \Rightarrow \mathrm{n}^{\circ} \mathrm{mol} \mathrm{KOH}=0.100 \times 0.210=0.0210 \mathrm{~mol}$

$$
\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{KOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{K}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

| Initial | 0.0100 | - | - | - |
| :---: | :---: | :---: | :---: | :---: |
| Added | - | 0.0210 | - | - |
|  | Final | - | 0.0010 | 0.0100 |
|  |  | 0.0200 |  |  |
| $\mathrm{~V}_{\text {final }}=$ | 310.0 mL |  |  |  |

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=\frac{0.0010}{0.310}=3.22 \times 10^{-3} \mathrm{~mol} \mathrm{~L} \mathrm{~L}^{-1}} \\
& p O H=2.49 \\
& p H=11.51
\end{aligned}
$$

## Curve



## Weak acid/base with strong base/acid

$1^{\text {st }}$ step - before beggining titration: at the beginning, the solution contains only the solute acid or base, and the pH is calculated from the concentration of that solute and its dissociation constant.
$2^{\text {nd }}$ step - before the equivalence-point: after various increments of titrant have been added (in quantities up to, but not including, an equivalent amount), the solution consists of a series of buffers.
$3^{\text {rd }}$ step - at the equivalence-point: the solution contains only the conjugate of the weak acid or base being titrated (that is, a salt), and the pH is calculated from the concentration of this product.
$4^{\text {th }}$ step - after equivalence-point: the excess of strong acid or base titrant represses the acidic or basic character of the reaction product to such an extent that the pH is governed largely by the concentration of the excess titrant.

## Example - weak acid

Derive a curve for the titration of 100.0 mL of $0.100 \mathrm{~mol} \mathrm{~L}^{-1}$ acetic acid with $0.100 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH} . \mathrm{K}_{\mathrm{a}}=1,8 \times 10^{-5}$

Initial questions:

1. Reaction?

$$
\mathrm{HAc}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{NaAc}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

2. Volume of NaOH at equivalence-point?

$$
\begin{gathered}
n^{o} \mathrm{~mol} \mathrm{NaOH}=n^{o} \mathrm{~mol} \mathrm{HAc} \\
0.100 x V_{\mathrm{NaOH}}=0.100 \times 100 \\
V_{\mathrm{NaOH}}=100 \mathrm{~mL}
\end{gathered}
$$

## Initial point

We must calculate the pH of a $0.100 \mathrm{~mol} \mathrm{~L}^{-1}$ solution of HAc

|  | $\mathrm{HAc}_{(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{Ac}^{-}{ }_{(\mathrm{aq})}$ |  |  |
| :--- | :---: | :---: | :---: |
| Initial | 0.100 | - | - |
| Equilibrium | $0.100-\mathrm{x}$ | - | x |

$$
K_{a}=\frac{\left[H_{3} O^{+}\right]\left[A c^{-}\right]}{[H A c]}
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.33 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}
$$

$$
p H=2.88
$$

After addition of 10.00 mL of reagent
A buffer solution consisting of NaAc and HAc has now been produced. The analytical concentrations of the two constituents are
$\mathrm{V}_{\mathrm{NaOH}}=10.00 \mathrm{~mL} \Rightarrow \mathrm{n}^{\circ} \mathrm{mol} \mathrm{NaOH}=0.100 \times 0.0100=0.00100 \mathrm{~mol}$

$$
\mathrm{HAc}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{NaAc}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

| Initial | 0.0100 | - | - | - |
| :--- | :---: | :---: | :---: | :---: |
| Added | - | 0.01000 | - | - |
| Final | 0.00900 | - | 0.00100 | 0.00100 |

Volume final $=110.00 \mathrm{~mL}$

$$
\begin{gathered}
K_{a}=\frac{\left[H_{3} O^{+}\right]\left[A c^{-}\right]}{[H A c]} \\
{\left[H_{3} O^{+}\right]=1.62 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}} \\
p H=3.79
\end{gathered}
$$

## Equivalence-point

All of the acetic acid has been converted to sodium acetate $\Rightarrow$ Hydrolysis
$\mathrm{V}_{\mathrm{NaOH}}=100.0 \mathrm{~mL} \Rightarrow \mathrm{n}^{\circ} \mathrm{mol} \mathrm{NaOH}=0.100 \times 0.100=0.0100 \mathrm{~mol}$

$$
\mathrm{HAc}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq)}} \rightleftharpoons \mathrm{NaAc}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

| Initial | 0.0100 | - | - | - |
| :--- | :---: | :---: | :---: | :---: |
| Added | - | 0.0100 | - | - |
| Final | - | - | 0.0100 | 0.0100 |

$$
\mathrm{Ac}_{(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftharpoons \mathrm{OH}_{(\mathrm{aq})}^{-}+\mathrm{HAc}_{(\mathrm{aq})}
$$

Initial 0.050

Equilibrium 0.050-x - x x
$\mathrm{V}_{\text {final }}=200.0 \mathrm{~mL}$
$K_{h}=\frac{K_{w}}{K_{a}}=\frac{[H A c]\left[\mathrm{OH}^{-}\right]}{\left[A c^{-}\right]} \square\left[O H^{-}\right]=5.27 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1} \begin{gathered}p O H=5.28 \\ p H=8.72\end{gathered}$

After addition of 100.1 mL of base
Both excess base and the acetate ion are sources of hydroxide ion. The contribution of later is small, however, because the excess of strong base represses the reaction.
$\mathrm{V}_{\mathrm{NaOH}}=100.1 \mathrm{~mL} \Rightarrow$ no mol NaOH $=0.100 \times 0.1001=0.01001 \mathrm{~mol}$

$$
\mathrm{HAc}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{NaAc}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

| Initial | 0.0100 | - | - | - |
| :--- | :---: | :---: | :---: | :---: |
| Added | - | 0.01001 | - | - |
| Final | - | 0.00001 | 0.0100 | 0.0100 |
|  |  |  |  |  |
| 200.1 mL |  |  |  |  |

With
$\left[\mathrm{OH}^{-}\right]=4.998 \times 10^{-5} \mathrm{~mol} \mathrm{~L} \mathrm{~L}^{-1} \quad$ Hydrolysis

$$
\begin{gathered}
p O H=4.30 \\
p H=9.70
\end{gathered}
$$

$\left[\mathrm{OH}^{-}\right]=5.05 \times 10^{-5} \mathrm{~mol} \mathrm{~L} \mathrm{~L}^{-1}$

$$
\begin{gathered}
p O H=4.30 \\
p H=9.70
\end{gathered}
$$

## Problem - weak base

Derive a curve for the titration of 100.0 mL of $0.100 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NH}_{4} \mathrm{OH}$ with $0.100 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HC} \ell \mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$

Initial questions:

1. Reaction?
2. Volume of NaOH at equivalence-point?

## Problem

A 50.00 mL aliquot of $0.0500 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaCN}$ is titrated with $0.100 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$
The reaction is

$$
\mathrm{CN}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{HCN}+\mathrm{H}_{2} \mathrm{O}
$$

Calculate the pH after the addition of (a) 0.00 ; (b) 10.00 ; (c) 25.00 ; and (d) 26.00 mL of acid. $\mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-10}$

## Curves - base strength



## Weak acid with weak base

-Important characteristic: gradual change of the pH close to equivalence-point, which incidentally occurs along the entire neutralization curve.
-There is no sudden change in pH , so a clear end point with simple indicators is not achieved.
-It is sometimes possible to find a suitable mixed indicator with sharp color change over a very narrow pH range.

## Polyprotic acids



A -25.00 mL of $0.1000 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{H}_{3} \mathrm{PO}_{4}$

B -25.00 mL of $0.1000 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
$\mathrm{C}-25.00 \mathrm{~mL}$ of $0.1000 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{H}_{2} \mathrm{SO}_{4}$

## Polyprotic acids with strong base

-The shape of the titration curve depends on the relative magnitude of the various dissociation constants (i.e., it may exhibit 2 or more end points).
$\cdot \mathrm{K}_{\mathrm{a} 1} / \mathrm{K}_{\mathrm{a} 2}>10^{3} \rightarrow$ simple monoprotic weak acids
-Assuming a diprotic acid $\mathrm{H}_{2} \mathrm{~A}$ with dissociation constant $\mathrm{K}_{\mathrm{a} 1}=1.00 \times 10^{-3}$ and $\mathrm{K}_{\mathrm{a} 2}=1.00 \times 10^{-7}$.

Initial $\mathrm{pH}(\mathrm{A})$ : we treat the system as if it contained a single monoprotic acid with a dissociation constant of $\mathrm{K}_{\mathrm{a} 1}$.
Region B: we have the equivalent of a simple buffer solution consisting of the weak acid $\mathrm{H}_{2} \mathrm{~A}$ and its conjugate base NaHA . (assume [ $\mathrm{A}^{2-}$ ] is negligible)

Equivalence-point (C): we have a solution of an acid salt.

Region D: we have a second buffer consisting of a weak acid $\mathrm{HA}^{-}$and its conjugate base $\mathrm{Na}_{2} \mathrm{~A}$, and we calculate the pH employing the second dissociation constant $\mathrm{Ka}_{2}$.
Point E: the solution contains the conjugate base of a weak acid with a dissociation constant of $\mathrm{Ka}_{2}$.
Region $F$ : we compute the hydroxide concentration from the molarity of the excess NaOH .


## Example

Derive a curve for the titration of 25.00 mL of $0.1000 \mathrm{~mol} \mathrm{~L}^{-1}$ maleic acid, $\mathrm{HOOC}-\mathrm{CH}=\mathrm{CH}-\mathrm{COOH}$, with $0.1000 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}$.

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{M}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HM}^{-} & \mathrm{K}_{\mathrm{a} 1}=1.3 \times 10^{-2} \\
\mathrm{HM}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{M}^{2-} & \mathrm{K}_{\mathrm{a} 2}=5.9 \times 10^{-7}
\end{array}
$$

$\mathrm{K}_{\mathrm{a} 1} / \mathrm{K}_{\mathrm{a} 2}>10^{3}$

Initial pH
Only the first dissociation makes an appreciable contribution to $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$; thus,

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \approx\left[\mathrm{HM}^{-}\right]
$$

Mass balance requires that

$$
\left[\mathrm{H}_{2} \mathrm{M}\right]+\left[\mathrm{HM}^{-}\right] \approx 0.1000 \text { or }\left[\mathrm{H}_{2} \mathrm{M}\right]=0.1000-\left[\mathrm{HM}^{-}\right]=0.1000-\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
\begin{gathered}
K_{a 1}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{0.1000-\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=1.3 \times 10^{-2} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.01 \times 10^{-2} \mathrm{~mol} \mathrm{~L}} \\
\mathrm{pH}=1.52
\end{gathered}
$$

## 1st Buffer Region

The addition of 5.00 mL of base results in the formation of a buffer consisting of the weak acid $\mathrm{H}_{2} \mathrm{M}$ and its conjugate base $\mathrm{HM}^{-}$. Assuming $\left[\mathrm{M}^{2-}\right.$ ] negligible:

$$
c_{N a H M} \approx\left[H M^{-}\right]=\frac{5.00 \times 0.1000}{30.00}=1.67 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}
$$

$$
c_{\mathrm{H}_{2} \mathrm{M}}=\frac{25.00 \times 0.1000-5.00 \times 0.1000}{30.00}=6.67 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}
$$

$$
\begin{gathered}
{\left[\mathrm{HM}^{-}\right]=c_{\mathrm{NaHM}}+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\left[\mathrm{OH}^{-}\right]} \\
{\left[\mathrm{H}_{2} \mathrm{M}\right]=c_{\mathrm{H}_{2} \mathrm{M}}-\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{OH}^{-}\right]}
\end{gathered} K_{a 1}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HM}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{M}\right]}=1.3 \times 10^{-2}
$$

Just before the 1st equivalence-point
The $\left[\mathrm{H}_{2} \mathrm{M}\right]$ is so small that it becomes comparable to $\left[\mathrm{M}^{2-}\right]$ and the second equilibrium also needs to be considered.
$\mathrm{V}_{\text {added }}=24.90 \mathrm{~mL}$

$$
\begin{gathered}
c_{H_{2} M}=\frac{25.00 \times 0.1000-24.90 \times 0.1000}{49.90}=2.00 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \\
c_{\text {NaHM }} \approx\left[\mathrm{HM}^{-}\right]=\frac{24.90 \times 0.1000}{49.90}=4.99 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}
\end{gathered}
$$

$M B: c_{H_{2} M}+c_{\text {NaHM }}=\left[H_{2} M\right]+\left[H M^{-}\right]+\left[M^{2-}\right]$
$C B:\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{Na}^{+}\right]=\left[\mathrm{HM}^{-}\right]+2\left[\mathrm{M}^{2-}\right]+\left[\mathrm{OH}^{-}\right]$

negligible

$$
\begin{aligned}
c_{\text {NaHM }} & =\left[H M^{-}\right]+2\left[M^{2-}\right]-\left[H_{3} O^{+}\right] \\
c_{\text {NaHM }} & =\left[H_{2} M\right]+\left[H M^{-}\right]+\left[M^{2-}\right]-c_{H_{2} M}
\end{aligned}
$$

$$
\left[H_{3} O^{+}\right]=c_{H_{2} M}+\left[M^{2-}\right]-\left[H_{2} M\right]
$$

$$
K_{a 1}=\frac{\left[H_{3} O^{+}\right]\left[H M^{-}\right]}{\left[H_{2} M\right]}
$$

$$
K_{a 2}=\frac{\left[H_{3} O^{+}\right]\left[M^{2-}\right]}{\left[H M^{-}\right]}
$$

$$
\left[H_{3} O^{+}\right]=c_{H_{2} M}+\frac{K_{a 2}\left[H M^{-}\right]}{\left[H_{3} O^{+}\right]}-\frac{\left[H_{3} O^{+}\right]\left[H M^{-}\right]}{K_{a 1}}=1.014 \times 10^{-4} \mathrm{~mol} L^{-1}
$$

$$
p H=3.99
$$

## 1st equivalence-point

$c_{\text {NaHM }} \approx\left[\mathrm{HM}^{-}\right]=\frac{25.00 \times 0.1000}{50.00}=5.00 \times 10^{-2} \mathrm{~mol} \mathrm{~L} \mathrm{~L}^{-1}$
$M B: c_{N a H M}=\left[H_{2} M\right]+\left[H M^{-}\right]+\left[M^{2-}\right]$
$C B:\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+c_{\mathrm{NaHM}}=\left[\mathrm{HM}^{-}\right]+2\left[\mathrm{M}^{2-}\right]+\left[\mathrm{OH}^{-}\right]$
$\left[H_{3} O^{+}\right]=\left[M^{2-}\right]+\left[O H^{-}\right]+\left[H_{2} M\right]$
$\left[H M^{-}\right] \approx c_{H M^{-}}$

$$
\begin{gathered}
{\left[H_{3} O^{+}\right]=\frac{K_{a 2}\left[H M^{-}\right]}{\left[H_{3} O^{+}\right]}+\frac{K_{w}}{\left[H_{3} O^{+}\right]}-\frac{\left[H_{3} O^{+}\right]\left[H M^{-}\right]}{K_{a 1}}=} \\
p H=4.11 \quad \mathrm{pH}=1 / 2\left(\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2}\right)
\end{gathered}
$$

Shortly after 1st equivalence-point
$V_{\text {added }}=25.01 \mathrm{~mL}$

In this region, the solution consists basically of $\mathrm{HM}^{-}$with some $\mathrm{M}^{2-}$ formed.

$$
\begin{aligned}
& c_{H^{-}}=\frac{n_{\text {NaHMform }}-\left(n_{\text {NaOHadic }}-n_{\text {NaHMform }}\right)}{V_{\text {total }}}=0.04997 \mathrm{~mol} \mathrm{~L}^{-1} \\
& c_{M^{2-}}=\frac{\left(n_{\text {NaOHadic }}-n_{\text {NaHMform }}\right)}{V_{\text {total }}}=1.996 \times 10^{-5} \mathrm{~mol} \mathrm{~L}
\end{aligned}
$$

$M B: c_{N a_{2} M}+c_{N a H M}=\left[H_{2} M\right]+\left[H M^{-}\right]+\left[M^{2-}\right]=0.49999 \mathrm{~mol} \mathrm{~L}{ }^{-1}$ $C B:\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{Na}^{+}\right]=\left[\mathrm{HM}^{-}\right]+2\left[\mathrm{M}^{2-}\right]+\left[\mathrm{OH}^{-}\right]$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=7.40 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$

$$
p H=4.13
$$

## 2nd buffer region

Addition of 25.50 mL of base resulted in the formation of a weak acid buffer $\mathrm{HM}^{-}$and its conjugate base $\mathrm{M}^{2-}$

$$
\begin{gathered}
{\left[M^{2-}\right] \approx c_{N a_{2} M} \approx \frac{\left(n_{\text {NaOHadic }}-n_{N a_{2} \text { Mform }}\right)}{V_{\text {total }}}} \\
{\left[H M^{-}\right] \approx c_{N a H M} \approx \frac{n_{N a_{2} \text { Mform }}-\left(n_{\text {NaOHadic }}-n_{N a_{2} M f o r m}\right)}{V_{\text {total }}}} \\
K_{a 2}=\frac{\left[H_{3} O^{+}\right]\left[M^{2-}\right]}{\left[H M^{-}\right]} \\
{\left[\mathrm{H}_{3} O^{+}\right]=2.89 \times 10^{-5} \mathrm{~mol} \mathrm{~L}} \\
p H=4.54
\end{gathered}
$$

Just before the 2nd equivalence-point
$V_{\text {added }}=49.90 \mathrm{~mL}$
In this region, the ratio $\mathrm{M}^{2-}$ / $\mathrm{HM}^{-}$becomes large and the equation for the simple buffers is no longer applied.

$$
\mathrm{M}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HM}^{-}+\mathrm{OH}^{-}
$$

$\left[M^{2-}\right] \approx c_{N a_{2} M} \approx \frac{\left(n_{\text {NaOHadic }}-n_{\mathrm{Na}_{2} \mathrm{Mform}}\right)}{V_{\text {total }}}$
$\left[H M^{-}\right] \approx c_{\text {NaHM }} \approx \frac{n_{\text {Na } 2 \text { Mform }}-\left(n_{\text {NaOHadic }}-n_{\mathrm{Na}_{2} \text { Mform }}\right)}{V_{\text {total }}}$

$$
\begin{gathered}
K_{b 1}=\frac{K_{w}}{K_{a 2}}=\frac{\left[O H^{-}\right]\left[H M^{-}\right]}{\left[M^{2-}\right]}=\frac{\left[O H^{-}\right]\left(c_{H M^{-}}-\left[O H^{-}\right]\right)}{c_{M^{2-}}-\left[O H^{-}\right]} \\
p H=8.61
\end{gathered}
$$

## 2nd equivalence-point

After the addition of 50.00 mL of $0.1000 \mathrm{~mol} \mathrm{~L}^{-1}$ sodium hydroxide, the solution is 0.0333 mol L-1 in $\mathrm{Na}_{2} \mathrm{M}$. Reaction of the base $\mathrm{M}^{2-}$ with water is the predominant equilibrium in the system and the only one that we need to take into account. Thus,

$$
\begin{gathered}
\mathrm{M}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HM}^{-}+\mathrm{OH}^{-} \\
{\left[M^{2-}\right] \approx c_{N a_{2} M} \approx \frac{\left(n_{\text {NaOHadic }}-n_{N a_{2} \text { Mform }}\right)}{V_{\text {total }}}=\frac{(50-25) x 0.1000}{75}=0.0333 \mathrm{~mol}^{-1}} \\
K_{b 1}=\frac{K_{w}}{K_{a 2}}=\frac{\left[O H^{-}\right]\left[\mathrm{HM}^{-}\right]}{\left[M^{2-}\right]} \\
{\left[O H^{-}\right] \approx\left[H M^{-}\right]} \\
{\left[M^{2-}\right]=c_{N a_{2} M}-\left[O H^{-}\right]} \\
p H=9.38
\end{gathered}
$$

Shortly after the 2nd equivalence-point
$V_{\text {added }}=50.01 \mathrm{~mL}$

$$
\begin{gathered}
\mathrm{M}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HM}^{-}+\mathrm{OH}^{-} \\
c_{M^{2-}} \approx \frac{n_{M^{2-}} \text { produced }}{V_{\text {total }}} \\
{\left[\mathrm{OH}^{-}\right]_{\text {excess }}=\left[\mathrm{OH}^{-}\right]_{\text {added }}-\left[\mathrm{OH}^{-}\right]_{\text {reacted }}}
\end{gathered}
$$

$$
\begin{gathered}
{\left[M^{2-}\right]=c_{M^{2-}}-\left[H M^{-}\right]} \\
{\left[O H^{-}\right]=\left[O H^{-}\right]_{\text {excess }}+\left[H M^{-}\right]}
\end{gathered}
$$

$$
p H=10.14
$$

Beyond the 2nd equivalence-point
$V_{\text {added }}=51.00 \mathrm{~mL}$
Further additions of sodium hydroxide repress the basic dissociation of $\mathrm{M}^{2-}$. The pH is calculated from the concentration of NaOH added in excess of that required for the complete neutralization of $\mathrm{H}_{2} \mathrm{M}$.

$$
\left[O H^{-}\right]_{\text {excess }}=\left[O H^{-}\right]_{\text {added }}-\left[O H^{-}\right]_{\text {reacted }}
$$

$$
p H=11.12
$$

Titration curve for 25.00 mL of $0.1000 \mathrm{~mol} \mathrm{~L}^{-1}$ maleic acid


## Polyprotic base with strong acid

$\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}^{-}+\mathrm{HCO}_{3}^{-}$
$\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}^{-}+\mathrm{CO}_{2}(\mathrm{aq})$


$$
\mathrm{K}_{\mathrm{b} 1}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 2}
$$

$$
\mathrm{K}_{\mathrm{b} 2}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 1}
$$

25.00 mL of $0.1000 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Na}_{2} \mathrm{CO}_{3}$

## Amphiprotic species

$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HPO}_{4}^{-} \quad \mathrm{K}_{\mathrm{a} 2}=6.32 \times 10^{-8}$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}^{-}+\mathrm{H}_{3} \mathrm{PO}_{4} \quad \mathrm{~K}_{\mathrm{b} 3}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 1}=1.41 \times 10^{-12}$
$\mathrm{K}_{\mathrm{a} 2} \gg \mathrm{~K}_{\mathrm{b} 3} \rightarrow$ titration with base
$\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{PO}_{4}^{3-}$

$$
\mathrm{K}_{\mathrm{a} 3}=4.5 \times 10^{-13}
$$

$\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$

$$
\mathrm{K}_{\mathrm{b} 2}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 2}=1.58 \times 10^{-7}
$$

$\mathrm{K}_{\mathrm{a} 3} \ll \mathrm{~K}_{\mathrm{b} 2} \rightarrow$ titration with acid

## Mixtures of strong and weak acids or strong and weak bases

Calculate the pH of a 25.00 mL mixture that is $0.1200 \mathrm{~mol} \mathrm{~L}^{-1}$ in hydrochloric acid and $0.0800 \mathrm{~mol} \mathrm{~L}^{-1}$ in the weak acid HA ( $\mathrm{K}_{\mathrm{a}}=1.00 \times 10^{-4}$ ) during its titration with $0.1000 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{KOH}$. Derive data for addition of the following mL of base: (a) 0.00 and (b) 5.00.

$$
V_{\text {added }}=0.00 \mathrm{~mL}
$$

[ $\mathrm{H}_{3} \mathrm{O}^{+}$] from dissociation of HA

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=c_{\mathrm{HCl}}+\left[A^{-}\right]+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{H} 2 \mathrm{O}}
$$

Assume that the presence of the strong acid so represses the dissociation o HA that $\left[\mathrm{A}^{-}\right] \lll 0.1200 \mathrm{~mol} \mathrm{~L}^{-1} \rightarrow \mathrm{pH}=0.92$

$$
\begin{aligned}
& V_{\text {added }}=5.00 \mathrm{~mL} \\
& V_{\text {mixture }}=25.00 \mathrm{~mL}
\end{aligned}
$$

$$
c_{H C l}=\frac{n H_{3} O^{+}{ }_{\text {initial }}-n H_{3} O^{+}{ }_{\text {reacted }}}{V_{\text {total }}}
$$

$$
\left[\mathrm{A}^{-}\right] \lll \mathrm{c}_{\mathrm{HC} \ell} \rightarrow \mathrm{pH}=1.08
$$

$$
V_{\text {KOH }}=29.00 \mathrm{~mL}
$$

$$
c_{H C l}=\frac{n H_{3} O^{+}{ }_{H C l}-n H_{3} O^{+} \text {reacted }}{V_{\text {total }}}=\frac{25.00 \times 0.1200-29.00 \times 0.1000}{25.00+29.00}=1.85 \times 10^{-3} \mathrm{~mol}^{-1}
$$

$$
c_{H A}=\frac{n H_{3} O^{+}{ }_{H A}}{V_{\text {total }}}=\frac{25.00 \times 0.0800}{54.00}=3.70 \times 10^{-2} \mathrm{molL}^{-1}
$$

$$
\left[H_{3} O^{+}\right]=c_{H C l}+\left[A^{-}\right]=1.85 \times 10^{-3}+\left[A^{-}\right]
$$

$$
\begin{gathered}
{[\mathrm{HA}]=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{1.00 \times 10^{-4}}} \\
\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{1.00 \times 10^{-4}}+\left[\mathrm{A}^{-}\right]=3.70 \times 10^{-2} \rightarrow\left[\mathrm{~A}^{-}\right]=\frac{3.70 \times 10^{-6}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+1.00 \times 10^{-4}} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.85 \times 10^{-3}+\frac{3.70 \times 10^{-6}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+1.00 \times 10^{-4}}} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.03 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \\
p H=2.52
\end{gathered}
$$



The shape of the curve for a mixture of weak and strong acids, depends in large measure on the strength of the weak acid.
pH changes that occur during the titration of mixtures containing $\mathrm{HC} \ell$ and several weak acids.


Note that the rise in pH at the first equivalence point is small or essentially nonexistent when the weak acid has a relatively large dissociation constant (curves A and B). For titrations such as these, only the total number of mmoles of weak and strong acid can be determined accurately.


Conversely, when the weak acid has a very small dissociation constant, only the strong acid content can be determined. For weak acids of intermediate strength ( $\mathrm{K}_{\mathrm{a}}$ somewhat less than $10^{-4}$ but greater than $10^{-8}$ ), there are usually two useful end points.

## Carbonates mixtures

- The qualitative and the quantitative determination of the constituents in a solution containing sodium carbonate, sodium hydrogen carbonate, and sodium hydroxide, either alone or admixed, provides interesting examples of how neutralization titrations can be employed to analyse mixtures.
- The analysis of such mixtures requires two titrations: one with an alkaline-range indicator, such as phenolphthalein, and the other with an acid-range indicator, such as bromocresol green.
- The composition of the solution can then be deduced from relative volumes of acid needed to titrate equal volumes of the sample.

```
TABLE 16-2
    Volume Relationships in the Analysis of Mixtures Containing Hydroxide,
    Carbonate, and Hydrogen Carbonate Ions
    Relationship between }\mp@subsup{V}{\mathrm{ phth and }}{}\mp@subsup{V}{\mathrm{ beg in the}}{
Constituents in Sample 
*}\mp@subsup{V}{\mathrm{ phth }}{}=\mathrm{ volume of acid needed for a phenolphthalein end point; }\mp@subsup{V}{\mathrm{ beg }}{}=\mathrm{ volume of acid needed
for a bromocresol green end point.


\section*{Example}

A solution contains \(\mathrm{NaHCO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}\), and NaOH , either alone or in a permissible combination. Titration of a 50.0 mL portion to a phenolphthalein end point requires 22.1 mL of \(0.100 \mathrm{~mol} \mathrm{~L}{ }^{-1} \mathrm{HC}\). A second 50.0 mL aliquot requires 48.4 mL of the \(\mathrm{HC} \ell\) when titrated to a bromocresol green end point. Deduce the composition, and calculate the molar solute concentrations of the original solution.

Only \(\mathrm{NaOH} \rightarrow \mathrm{V}_{\text {phth }}=\mathrm{V}_{\text {bcg }}\)
Only \(\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{~V}_{\text {phth }}=\mathrm{V}_{\text {bcg }}\)
22.1 mL (1st) less than half of 48.4 mL (2nd) \(\rightarrow \mathrm{NaHCO}_{3}\) in addition to \(\mathrm{Na}_{2} \mathrm{CO}_{3}\)

\section*{Problem}

A series of solutions containing \(\mathrm{NaOH}, \mathrm{Na}_{2} \mathrm{CO}_{3}\), and \(\mathrm{NaHCO}_{3}\), alone or in compatible combination, was titrated with \(0.1202 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HC} \ell\). The volumes of acid needed to titrate 25.00 mL portions of each solution to a (1) phenolphthalein and (2) bromocresol green end point are given in the table that follows. Use this information to deduce the composition of the solutions. In addition, calculate the number of miligrams of each solute per mililiter of solution. (W.M NaOH \(=40 \mathrm{~g} \mathrm{~mol}^{-1} ; \mathrm{Na}_{2} \mathrm{CO}_{3}\) \(=106 \mathrm{~g} \mathrm{~mol}^{-1}\) and \(\left.\mathrm{NaHCO}_{3}=84 \mathrm{~g} \mathrm{~mol}^{-1}\right)\)

(1)
(a) \(22.42 \quad 22.44\)
(b) \(15.67 \quad 42.13\)
(c) \(29.64 \quad 36.42\)
(d) \(\quad 16.12 \quad 32.23\)
(e) \(0.00 \quad 33.333\)

\section*{Nitrogen}

A 0.7121 g sample of a wheat flour was analyzed by the Kjeldahl method. The ammonia formed by addition of concentrated base after digestion with \(\mathrm{H}_{2} \mathrm{SO}_{4}\) was distilled into 25.00 mL of \(0.04977 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HC} \ell\). The excess \(\mathrm{HC} \ell\) was then back-titrated with 3.97 mL of \(0.04012 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}\). Calculate the percent N in the flour.
\[
\begin{gathered}
n_{H C l}=1.2443 \mathrm{mmol} \\
n_{\mathrm{NaOH}}=0.1593 \mathrm{mmol} \\
n_{N}=n_{H C l}-n_{N a O H}=1.0850 \mathrm{mmol} \\
\% N=\frac{n_{N} x P A}{m_{\text {amostra }}} \times 100 \%=2.1341
\end{gathered}
\]

\section*{Problem}

The formaldehyde content of a pesticide preparation was determined by weighing 0.3124 g of the liquid sample into a flask containing 50.0 mL of \(0.0996 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}\) and 50 mL of \(3 \% \mathrm{H}_{2} \mathrm{O}_{2}\). Upon heating, the following reaction took place:

\section*{\(\mathrm{OH}^{-}+\mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{HCOO}^{-}+2 \mathrm{H}_{2} \mathrm{O}\)}

After cooling, the excess base was titrated with 23.3 mL of \(0.05250 \mathrm{~mol} \mathrm{~L}^{-1}\) \(\mathrm{H}_{2} \mathrm{SO}_{4}\). Calculate the percentage of \(\mathrm{HCHO}\left(30.026 \mathrm{~g} \mathrm{~mol}^{-1}\right)\) in the sample.```

