UFJF - Universidade Federal de Juiz de Fora

Plano de Ensino

Disciplina: 211025 - QUANTIZAÇÃO EM TEORIAS DE CALIBRE (MÉTODOS AVANÇADOS)

Créditos: 4

Departamento: DEPTO DE FISICA /ICE

Ementa Quantização por método Faddeev-Popov em teória de Yang-Milla.
Campos de Yang-Mills.
A noção de orbita.
Factorização do volume de grupo de calibre. Determinante Faddeev-Popov (FP).
Ghost (fantasma) e antighost. A ação Faddeev-Popov.
Simetria BRST.
Espaço de estados físicos.
Simetria Anti-BRST. Equação de Zinn Justin.
Identidades de Slavnov - Taylor.
Renormalização em teorias de calibre.
Generalizações e propriedades especiais de quantização FP.
Unitariedade e admissíveis geradores de simetria de calibre.
Método Batalin- Vilkovisky para quantização de teorias de calibre gerais.
Teorias de calibre gerais.
Espaço de configuração.
Anticampos.
Antibracket.
Operador C.
Equação Mestre Quantica.
Funcional gerador de funções de Green.
Independência de calibre para matriz S.
Identidades de Ward.
Dependência de calibre de funções de Green. Procedimento de fixação de calibre.
Renormalização BRST.
Conteúdo
Bibliografia P .M. Lavrov and LL. Shapiro, Renormalization of gauge theories in curved spacetime, Physical Review D81 (2010) 044026.
P.M. Lavrov, Sp(2) renormalization, NucI. Phys. B849 (2011) 503.
I.A. Batalin and G.A. Vilkovisky, Gauge algebra and quantization, Phys. Lett. BI02 (1981) 27; Quantization ofgauge theories with linearly dependent generators, Phys.Rev. D28 (1983) 2567.
L.D. Faddeev and V.N. Popov, Feynman diagramsfor the Yang-Mills field, Phys.Lett. B25 (1967) 29.
C.N. Yang and R.L. Mills, Considerations ofisotopic spin and isotopic gauge invariance, Phys. Rev. 96 (1954) 191.
C. Becchi, A. Rouet and R. Stora, Renormalization ofthe abelian Higgs-Kibble model, Commun. Math. Phys. 42 (1975) 127; LV. Tyutin, Gauge invariance infleld theory and statistical physics in operator formalism, Lebedev Inst. preprint N 39 (1975).
T. Kugo and L Ojima, Local covariant operator formalism of non-abelian gauge theories and quark conflnementproblem, Progr.Theor.Phys.Suppl. 66 (1979) 1.
L Ojima, Another BRS transformation, Prog. Theor. Phys. 64 (1979)625.
Zinn-Justin J., Renormalization of gauge theories, in Trends in Elementary Particle Theory , Lecture Notes in Physics, VoI. 37, ed. H.Rollnik and K.Dietz (Springer- Verlag, Berlin, 1975).
A.A. Slavnov, Ward identities in gauge theories, Theor. Math. Phys. 10(1972)99; lC. Taylor, Ward identities and charge renormalization ofthe Yang-Mills field, NucI. Phys. B33 (1971) 436.
P .M. Lavrov and L V. Tyutin, Lagrange quantization of gauge theories and unitarity ofthe physical S-matrix, SOVo J. Nucl. Phys. 50 (1989) 912.
B.L. Voronov, P.M. Lavrov and LV. Tyutin, Canonical transformations and gauge dependence in general gauge theories, SOVo J. Nucl. Phys. 36 (1982) 292.
M. Asorey and P.M. Lavrov, Fedosov and Riemannian supermanifolds, J. Math. Phys. 50 (2009) 013530-1-16, 2009.
S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1.
B.S. DeWitt, Quantum Field Theory in Curved Space-Time, Phys. Rep. 19 (1975) 295.
L.D. Faddeev and A.A. Slavnov, Gauge flelds: lntroduction to quantum theory, The Benjamin/Cummings Publishing Company, Inc., 1980; M. Henneaux and C. Teitelboim, Quantization ofgauge systems, Princeton UP., Princeton, 1992; S. Weinberg,
The quantum theory offlelds, Vol. 11, Cambridge University Press, 1996; D.M. Gitman and LV. Tyutin, Quantization offlelds with constraints, Springer, Berlin, 1990.
M.A.L. Capri, AJ. Gomes, M.S. Guimaraes, V.E.R. Lemes, S.P. Sorella and D.G.Tedesko, A remark on the BRST symmetry in the Gribov-Zwanzider theory Phys.Rev. D82 (2010) 105019; L. Baulieu, M.A.L. Capri, A.J. Gomes, M.S. Guimaraes,V.E.R. Lemes, R.F. Sobreiro and S.P. Sorella, Renormalizability ofs quark- gluon model with soft BRST breaking in the infrared region, Eur. Phys. J. C66 (2010)451; D. Dudal, S.P. Sorella, N. Vandersickel and H. Verschelde, Gribov no-pole condition, Zwanziger horizonfunction, Kugo-Ojima conflnement criterion, boundary conditions, BRST breaking and ali that, Phys. Rev. D79 (2009) 121701; L. Baulieu and S.P. Sorella, Soft breaking of BRST invariance for introducing non- perturbative infrared ejJects in a local and renormalizable way, Phys. Lett. B671 (2009) 481;
M.A.L. Capri, AJ. Gomes, M.S. Guimaraes, V.E.R. Lemes, S.P. Sorella and D.G.Tedesko, Renormalizability ofthe linearly broken formulation ofthe BRST symmetry in presence ofthe Gribov horizon in Landau gauge Euclidean Yang-Mills theories,arXiv:ll02.5695.
D. Zwanziger, Action from the Gribov horizon, Nucl. Phys. B321 (1989) 591.
D. Zwanziger, Local and renormalizable action from the Gribov horizon, Nucl. Phys.B323 (1989) 513.
V.N.Gribov, Quantization ofNonabelian Gauge Theories, Nucl.Phys. B139 (1978) 1.
P.M. Lavrov and LV. Tyutin. On the structure of renormalization in gauge
Bibliografia (continuação)
Bibliografia complementar
Voltar