Cabos são membros estruturais longos, delgados e flexíveis projetados para suportar cargas axiais
Akashi Kaikyo
torres de 282,8 m
3.911 m
Pavilhão de São Cristóvão
Introdução

• Importante elemento estrutural
• Uso:
 – Pontes
 – Teleféricos
 – Linhas de transmissão
• 2 tipos de funcionamento
 – Cargas uniformemente distribuídas com relação a horizontal → configuração parabólica
 – Cargas uniformemente distribuídas com relação a configuração do cabo (peso próprio) → configuração catenária
• Hipótese
 – A força no cabo é sempre na direção do cabo
Relações Gerais

\[R = \int dR = \int w \, dx \]

\[\overline{R_x} = \int x \, dR \rightarrow \overline{x} = \frac{\int x \, dR}{R} \]
Equilíbrio

\[(T + dT) \sin (\theta + d\theta) = T \sin \theta + w \, dx\]
\[(T + dT) \cos (\theta + d\theta) = T \cos \theta\]

Fazendo: \(\sin d\theta = d\theta\)
\(\cos d\theta = 1\)

\[T \cos \theta \, d\theta + dT \sin \theta = w \, dx\]
\[-T \sin \theta \, d\theta + dT \cos \theta = 0\]

\[d(T \sin \theta) = w \, dx\]
\[d(T \cos \theta) = 0\]
A componente horizontal de T é constante

$$T \cos \theta = T_0 \rightarrow T = \frac{T_0}{\cos \theta}$$

Equação diferencial do cabo flexível

$$\frac{d^2 y}{dx^2} = \frac{w}{T_0}$$
Cabo parabólico

Quando a intensidade da carga distribuída \(w \) for constante o sistema se aproxima ao de uma ponte suspensa, onde o peso uniforme da superestrutura pode ser expresso por esta constante \(w \). Todavia, o peso próprio do cabo não é uniformemente distribuído mas o seu valor é tão pequeno, quando comparado ao do tabuleiro da ponte, que seu valor pode ser desprecado.

Um cabo de ponte suspensa carregado por uma carga uniforme na horizontal toma a forma de uma parábola.
c \rightarrow \text{constante de integração} \rightarrow \frac{dy}{dx} = 0 \text{ p } x=0 \rightarrow c=0

\frac{dy}{dx} = \frac{wx}{T_0}

\int_0^y dy = \int_0^x \frac{wx}{T_0} \, dx \quad \text{or} \quad y = \frac{wx^2}{2T_0}

\Rightarrow \text{Forma parabólica do cabo}
Tração no cabo

\[x = l_A \]
\[y = h_A \]
\[T_0 = \frac{wl_A^2}{2h_A} \Rightarrow y = h_A \left(\frac{x}{l_A} \right)^2 \]

\[T = \sqrt{T_0^2 + w^2 x^2} \]
\[T = w \sqrt{x^2 + \left(\frac{l_A^2}{2h_A} \right)^2} \]

Tração máxima (para IA > IB)

\[T_{\text{max}}(x = l_A) = wl_A \sqrt{1 + \left(\frac{l_A}{2h_A} \right)^2} \]
Comprimento do cabo

\[ds = \sqrt{dx^2 + dy^2} \]

\[
\int_0^{s_A} ds = \int_0^{l_A} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx = \int_0^l \sqrt{1 + \left(\frac{wx}{T_0}\right)^2} \, dx
\]

\[T_{\text{max}} = \frac{\omega L}{2} \sqrt{1 + \left(\frac{L}{4h}\right)^2} \]

\[S = L \left[1 + \frac{8}{3} \left(\frac{h}{L}\right)^2 - \frac{32}{5} \left(\frac{h}{L}\right)^4 + \cdots \right] \]

→ Para pequenas razões \(h/L \)

\[S = \frac{L}{2} \left(\sqrt{1 + 16 \left(\frac{h}{L}\right)^2} + \frac{1}{4} \left(\frac{h}{L}\right) \ln \left[4 \left(\frac{h}{L}\right) + \sqrt{1 + 16 \left(\frac{h}{L}\right)^2} \right] \right) \]

→ Para elevadas razões \(h/L \)
Exercício

Uma ponte suspensa é suportada por um cabo ancorado em (-15m, 3m) e (30m, 12m), em relação a origem em C, o ponto mais baixo do cabo. A via pesa 3 kN/m de comprimento horizontal. Determine:

a – a tração mínima no cabo
b – as trações nos cabos nos apoios
c – a tração máxima no cabo
d – o comprimento do cabo
Exercício

O cabo leve sustenta uma massa de 12 kg por metro de comprimento horizontal e está suspenso entre dois pontos distantes de 300m e situados no mesmo nível. Se a deflexão vale 60 m, ache a força trativa no meio do comprimento, a força trativa máxima e o comprimento total do cabo.
Apontar qual (quais) do(s) cabo(s) abaixo pode ser utilizado para se ligar os pontos A e B. Dados:
• Massa por metro dos cabos: 10 kg/m
• Altitude do ponto A = altitude do ponto B = 100m
• Altura mínima do ponto mais baixo do cabo com relação ao solo: hmin = 70 m
• G=9,8m/s²
Utilizar aproximação parabólica

<table>
<thead>
<tr>
<th>Cabo</th>
<th>Tração máxima (kN)</th>
<th>Comprimento disponível (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>35</td>
<td>312</td>
</tr>
<tr>
<td>B</td>
<td>40</td>
<td>307</td>
</tr>
<tr>
<td>C</td>
<td>45</td>
<td>306</td>
</tr>
</tbody>
</table>
Exercício

A via de rodagem de uma ponte suspensa é sustentada por dois cabos AB e BC. Uma extremidade é presa por pino ao pilar B. As outras são ancoradas na mesma altura em A e C, respectivamente, onde os cabos apresentam inclinações horizontais. A carga da via é de 4 kips/ft.

a – determine a resultante das forças exercidas no pilar pelos cabos e as forças exercidas nos apoios A e C.

b – determine o comprimento dos cabos.
Cabo catenária

Um cabo sob ação do peso próprio toma a forma da catenária

\[wdx \rightarrow \mu ds \]

\[\frac{d^2 y}{dx^2} = \frac{\mu}{T_0} \frac{ds}{dx} \]
\[\frac{d^2 y}{dx^2} = \frac{\mu}{T_0} \frac{ds}{dx} \]

\[s = f(x, y) \Rightarrow (ds)^2 = (dx)^2 + (dy)^2 \]

\[\frac{d^2 y}{dx^2} = \frac{\mu}{T_0} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \]

Equação diferencial da curva (catenária)

Solução:

\[p = \frac{dy}{dx} \]

\[\frac{dp}{\sqrt{1 + p^2}} = \frac{\mu}{T_0} \, dx \Rightarrow \ln\left(p + \sqrt{1 + p^2}\right) = \frac{\mu}{T_0} x + c \]

\[c = 0 \text{ pois } \frac{dy}{dx} = p = 0 \text{ qdo } x = 0 \]

\[y = \frac{T_0}{\mu} \cosh \frac{\mu x}{T_0} + K \]
\[y = \frac{T_0}{\mu} \cosh \frac{\mu x}{T_0} + K \]

\[x = 0 \rightarrow y = 0 \rightarrow K = -\frac{T_0}{\mu} \]

\[
y = \frac{T_0}{\mu} \left(\cosh \frac{\mu x}{T_0} - 1 \right)
\]

Equação da curva da catenária
\[
\frac{dy}{dx} = \tan \theta = \frac{\mu s}{T_0}
\]

\[
s = \frac{T_0}{\mu} \sinh \left(\frac{\mu x}{T_0} \right)
\]

\[
T^2 = \mu^2 s^2 + T_0^2
\]

\[
T = T_0 \cosh \left(\frac{\mu x}{T_0} \right)
\]

\[
T = T_0 + \mu y
\]
Exercício

Uma cabo inextensível de 50 ft de comprimento é fixado nos pontos (20ft, 10 ft) e (-20 ft, 10ft) e é carregado por seu peso de 0,2 lb/ft de comprimento do cabo. Determine:

a – a flecha do cabo
b – a tração H no cabo em sua menos elevação
c – a tração máxima no cabo
d – o ângulo que o cabo forma com o eixo horizontal em B
Exercício

O cabo da figura possui massa de 12 kg por metro de seu próprio comprimento e sustenta apenas o seu peso próprio. O cabo está suspenso entre dois pontos distantes de 300 m e situados no mesmo nível, tendo uma deflexão de 60 m. Determine a força trativa na metade do comprimento, a força trativa máxima e o comprimento total do cabo.