Loss of AMPK exacerabes experimental autoimmune encephalomyelitis disease severity

Narender Nath, Musfiq Khaan, Ramandeep Rattan, Ashutosh Mangalam, Randhir S. Makkar, Carloe de Meester, Luc Bertrand, Inderjit Singh, Yingjie Chen, Benoit Viollet, Shailendra Giri.

AMPK is a phylogenetically conserved intracellular energy sensor which plays a central role in the regulation of glucose and lipid metabolism. It is a heterotrimeric complex enzyme comprising of a catalytic (ε1 or ε2), a regulatory (β1 or β2), and an AMP-binding regulatory (γ1, γ2, or γ3) subunits. AMPK gets activated by alterations in the AMP:ATP ratio in response to energetic stress and requires phosphorylation of Thr172 in the activation loop of the ε catalytic subunit. Once activated, AMPK induces catabolic pathways including glucose and fatty acid oxidation, while inhibiting ATP-consuming anabolic pathways including cholesterol, fatty acid, and triacylglycerol synthesis. Three upstream kinases have been identified as activators of AMPK, the tumor suppressor LKB1, calcium/calmodulin-dependent protein kinase (CaMKK) and TGF-beta-activated kinase-1 (TAK1). MS is an inflammatory autoimmune demyelinating disease of CNS, in part, mediated by myelin-specific CD4 T cells. Different classes of immunomodulatory drugs with distinct mechanisms of action have been approved for MS treatment. However, current MS medications are either partially effective with significant side effects or less effective for long-term treatment. Therefore, identification of novel targets for developing a new class of drugs is essential, which can be used for MS therapy alone or in combination with existing drugs.

Materials and methods

Animals. Female 6- to 8-wk-old C57BL/6 and SJL mice were obtained from National Cancer Institute (NCI), and were housed in...
pathogen free conditions. The generation of AMPKα1(−/−) and α2(−/−) mice has been described previously [13–15]. AMPKα1(−/−) (background of C57B6/129), α2(−/−) mice (background of C57B6) and their respective wild type (WT) mice were maintained on a 12:12-h light–dark cycle and received standard rodent chow and water ad libitum. Genotyping was performed by PCR using DNA from a tail-piece as described before [13–15]. All animal protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of the Medical University of South Carolina, Charleston. Paralyzed mice were afforded facile access to food and water.

Peptide, reagents and cell culture. Myelin proteolipid protein peptide (PLP|39–151) (HSLGKWLPGLPDKP) and myelin oligodendrocyte protein peptide (MOG35–55) (MEVGWYRSPFSRVVHLYRNGK) were purchased from Peptide International Inc. Louisville, KY USA. The anti-α/AMPKα, pACC and AMPKα antibodies were purchased from Cell Signaling. The anti-AMPKα1, β1/2 and γ1/2 Abs were purchased from Epitomics (Burlingame, CA).

EAE induction, Histology and recall response. AMPK null mice (α1−/− or α2−/−) and respective WT mice (6–8 wk old) were immunized on day 0 and 7 by subcutaneous (s.c.) injections in the flank region with total 100 µl of emulsion containing MOG35–55 peptide along with killed *Mycobacterium tuberculosis* H37Ra (400 µg). In case of EAE induction in SJL mice, PLP|39–151 (100 µg/mouse) was used. Each mouse additionally received 200 µg of pertussis toxin (Sigma) by intravenous (i.v.) injection in 300 µl of PBS on day 0 and 7 of immunization and clinical disease was monitored as described earlier [16]. H&E staining of the lumbar region of the spinal cords were performed as described earlier [16]. Myelin MOG35–55-immune spleen cells (2 × 10^6/100 µl/well) isolated from WT and AMPKα1−/− mice were cultured in the presence of MOG35–55 (25 µg/ml). Cell proliferation and the production of cytokines (IFNγ and IL-17) were examined as before [16].

Separation of subpopulation of T cells. Mice were killed at the peak of EAE disease (day 20) and spleens were removed, the single cell suspension was prepared. Red blood cells (RBC) were lysed by 1× phalarmyse and then washed twice with RPMI-1640. Finally, the cells were resuspended in RPMI complete media and counted. Total CD3 T cells were enriched using T cells enrichment columns (R&D Systems) as per manufacturer’s instructions. Different subpopulation of T cells (CD4, CD8 and CD4CD25) from control and EAE mice were enriched using MagCellect CD4, CD8 and CD4CD25 regulatory T cells isolation kits, respectively (R&D Systems).

Immunoblot analyses. Cells were lysed in lysis buffer [50 mM Tris–HCl (pH 7.5), 250 mM NaCl, 5 mM EDTA, 50 mM NaF, and 0.5% Nonidet P-40] containing a protease inhibitor cocktail (Sigma) and 50 µg of proteins was used for immunoblot analysis of pAMPK, pα1, pACC, AMPKα, AMPKα1 and β actin using their specific antibodies as described before [16,17].

AMPK kinase assay. AMPK activity was assayed by immunoprecipitation followed by kinase assay using recombinant ACC protein (Upstate Biotech) as a substrate as described before [16,17].

Nucleotide assay. Adherent, non-adherent and T cells from control and EAE mice were lysed in perchloric acid as described [18]. These extracts were neutralized with 1.5 M KOH/KHCO3 and then separated by high-performance liquid chromatography to measure ATP levels [18].

Statistical analyses. GraphPad Prism software (GraphPad Software Inc.) was utilized throughout for statistical analysis. Kruskal–Wallis test and Student’s t-test were employed to analyze clinical disease score. Statistics for densitometric values comparison for proliferation and cytokine responses were analyzed with one-way multiple-range ANOVA and Student’s t-test. A value of *p* < 0.05 and above was considered significant.

Results and discussion

Expression of AMPK subunits and their isoforms

We first examined the expression of different subunits of AMPK and their isoforms in T cells, antigen presenting cells (macrophages, dendritic and endothelial cells) and mouse brain (Suppl. Fig. S1A). The expression of α1, β1 and γ2 was found to be predominant in all the cells examined; however, expression of α2 was detected only in the brain (Suppl. Fig. S1A). Since, EAE disease is primarily mediated by T cells, therefore, we examined its expression in freshly isolated subsets of CD3 T cells (CD4, CD8 and CD4CD25) without any stimulation. The expression of α1, β1, γ1 and γ2 was predominantly expressed in CD4, CD8 and in regulatory (CD4CD25) T cells (Suppl. Fig. S1B). These results were further supported by quantitative PCR using specific primers of AMPK subunits and their isoforms (Suppl. Fig. S1 C).

AMPK activity was down regulated during EAE disease progression

To examine the status of AMPK under inflammatory disease condition, we measured AMPK activity and its phosphorylation in CNS at the peak of EAE disease (day 20). AMPK activity was determined by immunoprecipitation with AMPKα antibodies followed by kinase assay using recombinant Acetyl CoA Carboxylase (ACC) as a substrate. AMPK activity was significantly downregulated at the peak of EAE disease in brain compared to control mice (Fig. 1 A). Similarly, phosphorylation of both AMPK and its bona fide substrate ACC was decreased in lymph nodes under EAE disease (Fig. 1 B). AMPK activity examined by kinase assay in total spleen cells was also found significantly reduced (Suppl. Fig. S2). We further analyzed the expression of AMPK and observed that the protein levels of AMPKα1, -β1/2 and -γ1 subunits were all significantly decreased in spleen cells isolated from EAE except -γ2 (Fig. 1C). This data strongly suggests that AMPK activity gets downregulated during EAE disease in lymphoid and non lymphoid organs. Interestingly, the decreased AMPK activity was due to the loss of AMPKα1 and other subunits (β1/2 and γ1) at protein levels without any changes in their mRNA expression (Data not shown) suggesting that AMPK is regulated at protein translation step or degradation. This also raises the question about the mechanism of regulation of AMPK protein levels during EAE disease. Whether inflammation is a causative effect or an upstream event in loss of AMPK or vice versa? Recent studies suggest that AMPK and AMPK-related kinases can be regulated by ubiquitin-dependent proteosome degradation [19,20], which may be one of the mechanisms of its regulation in immune cells during EAE.

To further investigate whether the inhibition of AMPK activity was confined to *in vivo* inflammatory condition or it could be mimicked *in vitro*, a macrophage cell line (RAW 266.4) was used and the inflammatory responses were stimulated with LPS/IFNγ (1 µg/50 ng/ml) for 18 h followed by examination of phosphorylation of AMPK and ACC. The stimulus with LPS/IFNγ downregulated AMPK activity as documented by decreased phosphorylation of AMPKα and ACC (Suppl. Fig. S3Aii). To mimic EAE disease, we generated Th1 conditioned media from *in vitro* stimulated CD4 T cells and macrophage cells were treated with Th1 media (1:20 dilution) for 18 h. Interestingly, phosphorylation of AMPKα and ACC was observed very low compared to untreated cells (Suppl. Fig. S3Aii). Protein levels of AMPKα1, -β1 and -γ1 subunits were slightly decreased in RAW cells treated with LPS/IFNγ or Th1 media (Suppl. Fig. 3 Aii). Since microglia are resident APC in the CNS and further activates infiltrated T cells during disease, therefore, we examined AMPK in these cells under inflammatory condition. For this, microglial cell line (BV2) was treated with Th1 conditioned media
AMPK was down regulated at the peak of EAE disease. (A) EAE was induced in C57BL/6 mice using MOG35–55 peptide and at the peak of disease, mice were killed and AMPK activity was examined in brain homogenate using AMPKα antibody followed by kinase assay as described in methods. *P < 0.05 compared to control mice (n = 3). (B) Lymph nodes were isolated from control and EAE (SJL) mice at the peak of disease (Day 20) and phosphorylation of ACC and AMPKα was examined by immunoblot and densitometry analysis of pACC and pAMPKα were normalized with β actin. **P < 0.001 compared to control mice (n = 3). (C) Immunoblot of various proteins including pAMPKα, -α1, -β1/2, -γ1 and β actin were performed in the lysate isolated from spleen cells from control and EAE mice (C57B6) as described above (A). Blots are representation of three independent experiments. (D) Spleen cells were isolated from the control and EAE diseased mice (B6) at peak of disease (day 20) and T cells, adherent and non-adherent cells were fractioned as described in method. Phosphorylation of ACC and AMPKα was examined using immunoblot analysis. (E) Subpopulations of CD3T cells (CD4, CD8 and CD4CD25) were isolated from control and EAE mice (B6) and processed for analysis of pACC, pAMPKα, -α1 and β actin by immunoblot using their specific antibodies as described in methods.

AMPK was down regulated in sub-fractions of spleen cells during EAE disease

Spleen cells are comprised of mainly T cells, B cells, macrophages and dendritic cells. Since we observed the downregulation of AMPK in total spleen cells during EAE disease progression, we further examined its activity in subpopulations of spleen cells. For this, we separated spleen cells isolated from control and EAE mice in three different fractions: (1) adherent cells (mainly macrophages); (2) enriched CD3 positive T cells; and (3) non-adherent cells (total lymphocytes). We observed that phosphorylation of ACC and AMPKα was reduced in all fractionated cells isolated from total spleen cells including CD3 T cell, adherent and non-adherent cells as evident from immunoblot analysis of pACC and pAMPKα (Fig. 1D). We further examined the phosphorylation of ACC and AMPKα in total T cells (CD3) and its subsets (CD4, CD8 and CD4CD25) from control and EAE diseased mice. As depicted in Fig. 1E, we observed the inhibition of phosphorylation of ACC and AMPKα in total T cells (CD3) and their subsets, which was found due to the loss of AMPKα1 protein levels in EAE disease compared to control mice. These results indicate that reduced AMPK activity is a general phenomenon in immune cells during EAE disease process. Our findings are in contrast to others where they have shown the activation of AMPK by antigen receptor and Ca2+ in T lymphocytes mediated by CaMKK[21]. The difference in the outcome of theirs and our study may be due to the nature of stimulation as they have used PMA/ionomycin or TCR engagement by CD3 ligation (in vitro studies), whereas we have examined the AMPK in immune cells in vivo under disease condition without any in vitro stimulation. Our results have direct relevance to the inflammatory autoimmune disease like EAE/MS and may be implicated to other inflammatory diseases.

A well characterized mechanism of AMPK activity modulation is the alteration of cellular energy levels reflected by an altered AMP:ATP ratio[1]. Therefore, we investigated the energy status in immune cells under disease by measuring the intracellular ATP and AMP levels in total spleen cells, spleen macrophage and CD3 T cells isolated from control and EAE mice. Higher levels of ATP was detected in total spleen cells (10.3 vs. 6.9 nmol/10^6 cells, P < 0.001) and in spleen macrophage cells (10.8 vs. 5.46 nmol/10^6 cells, P < 0.001), however, no change was found in ATP levels in T cells (7.7 vs. 8.6 nmol/10^6 cells, P > 0.089) isolated from EAE mice compared to the control (Suppl. Fig. S4). We were unable to detect AMP levels in total spleen cells, CD3 and spleen macrophage cells suggesting these cells exhibit a normal energy status in EAE mice.

AMPKα1 null mice (−/−) exhibited exacerbated EAE disease severity compared with WT littermates

Since we observed loss of AMPKα1 at protein level in all immune cells, next we examined the effect of AMPKα1−/− gene disruption on the development of EAE disease using AMPKα1 null mice. EAE was induced in AMPKα1−/− and WT mice following active immunization with MOG35–55. As shown in Fig. 2 and in Table
the disease from AMPK to wild type EAE mice (two-way ANOVA). Numbers of mice used in the study are summarized in Table 1. (B) Spinal cords (lumbar regions) were harvested at the peak day of inflammatory cells into the CNS of WT and AMPK mice. As shown in Fig. 2B, AMPK mice exhibited severe EAE disease compared to WT. (A) Active EAE was induced in AMPK mice and WT littermate (C57B6/129) with immunization of 100 µg of peptides MOG35-55 on day 0 and 7. The clinical symptoms were scored every day in a blinded manner. Data points are presented as the mean ± SEM. *P < 0.001 refers to wild type EAE mice (two-way ANOVA). Numbers of mice used in the study are summarized in Table 1. Our novel observations, the loss of AMPK during EAE disease and exacerbation of EAE clinical symptom in AMPK null mice suggesting a critical role of AMPK in the regulation of inflammatory disease progression.

To confirm that AMPK mice were sensitized to MOG35-55 peptide, we measured the Ag-induced T cell proliferation ex vivo. As shown in Fig. 2C, active culture of spleen cells from WT and AMPK mice displayed normal cell proliferation and pro-inflammatory cytokines production suggesting that loss of AMPK did not affect the normal cellular functions.

Table 1
EAE in AMPK WT, heterozygote and in homozygous littermates.

<table>
<thead>
<tr>
<th></th>
<th>Number of mice</th>
<th>Incidence</th>
<th>% Incidence</th>
<th>Mean maximum score at peak</th>
<th>Peak day</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>14</td>
<td>14/14</td>
<td>100</td>
<td>2.59 ± 0.35</td>
<td>20</td>
</tr>
<tr>
<td>AMPKα1 (+/–)</td>
<td>13</td>
<td>13/13</td>
<td>100</td>
<td>3.05 ± 0.37</td>
<td>21</td>
</tr>
<tr>
<td>AMPKα1 (−/−)</td>
<td>7</td>
<td>7/7</td>
<td>100</td>
<td>3.37 ± 0.10</td>
<td>20</td>
</tr>
</tbody>
</table>

Active EAE was induced in AMPK WT, heterozygote and in homozygous mice with MOG35-55 peptide. Total number of mice used in study, incidence, clinical disease score and peak day are reported in this table. Mean maximum score are given at the peak of disease. ***P < 0.001, **P < 0.01 as compare with WT EAE (Student t-test).
which is consistent with a recent report [23]. However, loss of AMPKα1 enhances the production of IFNγ with lesser production of IL17 compared with WT mice required further detail study to establish the role of AMPKα1 in modulation of pro-inflammatory cytokines under inflammatory environment. Loss of AMPKα1 expression in all immune cells and the higher production of pro-inflammatory cytokines during EAE disease indicate an inverse correlation. But, to establish this relationship, enzymatic active AMPKα1 has to be restored in immune cells and examine if levels of cytokines and EAE disease course can be modulated.

Altogether, our study identified for the first time that energy sensor is lost during disease in all immune cells and its genetically deficient mice exhibits an increased severity of EAE disease suggesting its critical role in inflammatory disease progression.

Acknowledgments

The authors thank Ms. Joyce Bryan and Carrie Barnes for their technical assistance. Authors also acknowledge generous support of Prof. Inderjit Singh for providing infrastructure for conducting this study. This investigation (S.G.) was supported by Grants (RG 3810-A-1, PP1283) from the National Multiple Sclerosis Society. This work was also supported by Extramural Research Facilities Program of the National Center for Research Resources (Grants C06 RR018823 and No C06 RR015455). C.d.M. is supported by the Fund for Scientific Research in Industry and Agriculture (F.R.I.A.), Belgium. L.B. is Research Associate of the Fonds National de la Recherche Scientifique, Belgium.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bbrc.2009.05.106.

References