Universidade Federal de Juiz de Fora

Introdução à Engenharia Elétrica

Planejamento de Sistemas Energéticos / Elétricos

Prof. Bruno Henrique Dias
Áreas

Engenharia Elétrica

- Telecomunicações
- Eletrônica
- Energia
- Robótica e Automação
- Sistemas de Potência
A Energia é fator de alto impacto no desenvolvimento

O IDH leva em consideração, entre outros fatores, o nível de eletrificação dos países
<table>
<thead>
<tr>
<th>High</th>
<th>0.950 and over</th>
<th>0.900–0.949</th>
<th>0.850–0.899</th>
<th>0.800–0.849</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>0.750–0.799</td>
<td>0.700–0.749</td>
<td>0.650–0.699</td>
<td>0.600–0.649</td>
</tr>
<tr>
<td>Low</td>
<td>0.450–0.499</td>
<td>0.400–0.449</td>
<td>0.350–0.399</td>
<td>under 0.350</td>
</tr>
<tr>
<td></td>
<td>not available</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DESENVOLVIMENTO SUSTENTÁVEL

Conceito que surgiu na década de 80, na ONU, que visa o compromisso entre Necessidade de Desenvolvimento e Proteção ao Meio Ambiente.

“Desenvolvimento Sustentável: é aquele que satisfaz as necessidades das gerações presentes, sem afetar a capacidade das gerações futuras de também satisfazerem suas próprias necessidades”

Maria Paula Burattini
Protocolo de Kyoto - redução de gases de efeito estufa através de metas para os países

Mecanismos de Desenvolvimento Limpo

Mercado de Créditos de Carbono

Europa

Brasil

Creditos Carbono
Sistemas de potência
Engenharia Elétrica

Geração
Engenharia Elétrica

Geração
Engenharia Elétrica

Geração
Engenharia Elétrica

Geração
Transmissão
Distribuição
Distribuição
Engenharia Elétrica

Distribuição

Conexão para o transformador

Cabo de sustentação

Poste

Fio Terra

Linha de distribuição

240V para casa

Transformador

© 2002 HowStuffWorks

GE Watthour Meter

KILOWATTHOURS.
Sistema Elétrico de Potência

6,9kV – 30kV
230kV – 750kV
69kV – 138kV
13,8 kV-23,1kV
110V-220V

Rede Básica
Transmissão: A entrada de novos agentes de transmissão, que não precisam ser membros da CCEE, ocorre por meio de licitação para construção de novas linhas.

Distribuidor: fornece EE ao consumidor final. Deve conceder livre acesso a todos os consumidores de sua zona de atuação, mesmo não comprando energia dessa distribuidora.

Geração: Geradores Públicos, Privados, PIE, e Auto-produtores

 Consumidor Cativo: adquire energia da Distribuidora a cuja rede esteja conectado, sujeitando-se a tarifas regulamentadas.
Quem controla o setor?

Organização do Setor: Novo Modelo

- **CNPE** – Conselho Nacional de Política Energética.
 - Homologação da política energética, em articulação com as demais políticas públicas.
 - Órgão interministerial, coordenado pelo ministro do MME.

- **CMSE** – Comitê de Monitoramento do Setor Elétrico.
 - Monitoramento das condições de atendimento e recomendação de ações preventivas para garantir a segurança do suprimento.

- **MME** – Ministério de Minas e Energia.
 - Formulação e implementação de políticas para o setor energético, de acordo com as diretrizes do CNPE.

- **EPE** – Empresa de Pesquisa Energética.
 - Execução de estudos para definição da Matriz Energética e planejamento da expansão do setor elétrico (geração e transmissão).

- **ANEEL** – Agência Nacional de Energia Elétrica.
 - Regulação e fiscalização, zelando pela qualidade dos serviços prestados, universalização do atendimento e pelo estabelecimento de tarifas para consumidores finais.

- **ONS** – Operador Nacional do Sistema Elétrico.
 - Coordenação e controle da operação da geração e da transmissão no sistema elétrico interligado.

- **CCEE** – Câmara de Comercialização de Energia Elétrica.
 - Administração de contratos, liquidação do mercado de curto prazo, Leilões de Energia.
Quem controla o setor?

Organização do Setor: Novo Modelo

CCEE – Câmara de Comercialização de Energia Elétrica.
Administração de contratos, liquidação do mercado de curto prazo, Leilões de Energia.

ONS – Operador Nacional do Sistema.
Coordenação e controle da operação da geração e da transmissão no sistema elétrico interligado

ANEEL – Agência Nacional de Energia Elétrica.
Regulação e fiscalização, zelando pela qualidade dos serviços prestados, universalização do atendimento e pelo estabelecimento de tarifas para consumidores finais.

CNPE – Conselho Nacional de Política Energética.
Homologação da política energética, em articulação com as demais políticas públicas. Órgão interministerial, coordenado pelo ministro do MME.
Quem controla o setor?

Organização do Setor: Novo Modelo

EPE – Empresa de Pesquisa Energética.
Execução de estudos para definição da Matriz Energética e planejamento da expansão do setor elétrico (geração e transmissão)

MME – Ministério de Minas e Energia.
Formulação e implementação de políticas para o setor energético, de acordo com as diretrizes do CNPE

CMSE – Comitê de Monitoramento do Setor Elétrico.
Monitoramento das condições de atendimento e recomendação de ações preventivas para garantir a segurança do suprimento.
Brasil: Dimensões Continentais
Sistema Elétrico de Potência
Sistema Elétrico de Potência
Problema 1: Plan. Expansão da Transmissão

Desejo ampliar o sistema de transmissão em determinado trecho.

Qual a melhor maneira de fazer?

Qual o melhor caminho?

Quantas linhas construir?

O que quero melhorar (otimizar)?
Problemas de Otimização

230 kV

750 kV
Sistema Garver

Características do Sistema:

- 6 barras
- 45 circuitos candidatos (15x3)
- 6 circuitos existentes
- Demanda total = 760 MW

\[4^{15} = 10^9\] combinações
Problemas de Otimização

Sistema Garver
Problemas de Otimização

Sistema Equiv. Da Região Sul do Brasil
Problemas de Otimização

Sistema Equiv. Da Região Sul do Brasil

Características do Sistema:

- 46 barras
- 158 circuitos candidatos (79x2)
- 66 circuitos existentes
- Demanda total = 6880 MW

\[3^{79} = 10^{37}\] combinações
Brasil: Sistema Hidrotérmico
Planejamento da Operação

Matriz de Energia Elétrica Brasileira

- Hidráulica: 77,0%
- Carvão e Derivados: 1,6%
- Gás natural: 3,3%
- Nuclear: 2,6%
- Petróleo: 2,8%
- Derivados de Biomassa: 4,1%
- Eólica: 0,1%
- Importação: 8,5%

Fonte: EPE – BEN 2008
Planejamento da Geração

Como gerar energia e calcular o preço?

Dado que o sistema está suprindo a carga, quanto custa gerar um MWh adicional?
Formação de Preços

Custo Marginal da Operação
Formação de Preços

Custo Marginal da Operação

Submercado SUDESTE / CENTRO OESTE
- GT1 = 130,00 R$/MWh
- GT2 = 95,00 R$/MWh
- GH3 = 6,25 R$/MWh
- GH4 = 6,20 R$/MWh
- GH5 = 6,00 R$/MWh

Submercado SUL
- GT6 = 100,00 R$/MWh
- GH7 = 6,48 R$/MWh
- GH8 = 6,25 R$/MWh

Geração Efetiva
- 860 MWh
- 450 MWh

Custo de Geração
- [R$/MWh]

CMO
- 95,00 R$/MWh
- 6,48 R$/MWh
- 6,25 R$/MWh

SE/CO
- Geração Efetiva 860 MWh

SUL
- Geração Efetiva 450 MWh

© CCEE
Custo Marginal da Operação

Formação de Preços

Geração Efetiva
515 MWh

Norte

GT5 = 6,00
GT10 = 7,10
GH11 = 6,30
GH12 = 6,25
GH13 = 6,20

GT1 = 8,00
GH7 = 6,20
GH8 = 6,25

CMO = 80,00 [R$/MWh]

Custo de Geração
[R$/MWh]

Geração Efetiva
400 MWh

NE

GT14 = 120,00
GH15 = 7,00
GH16 = 6,25
GH17 = 6,20
GH18 = 6,00

CMO = 7,00 [R$/MWh]

Geração Efetiva
400 MWh

Norte

GT5 = 6,00
GT10 = 7,10
GH11 = 6,30
GH12 = 6,25
GH13 = 6,20

GT1 = 8,00
GH7 = 6,20
GH8 = 6,25

CMO = 80,00 [R$/MWh]

Custo de Geração
[R$/MWh]

Geração Efetiva
515 MWh

Norte

GT5 = 6,00
GT10 = 7,10
GH11 = 6,30
GH12 = 6,25
GH13 = 6,20

GT1 = 8,00
GH7 = 6,20
GH8 = 6,25

CMO = 80,00 [R$/MWh]

Custo de Geração
[R$/MWh]

Geração Efetiva
400 MWh

NE

GT14 = 120,00
GH15 = 7,00
GH16 = 6,25
GH17 = 6,20
GH18 = 6,00

CMO = 7,00 [R$/MWh]
Formação de Preços

Preço de Liquidação das Diferenças

Limites PLD: mín 12,20 R$/MWh, máx 727,52 R$/MWh

<table>
<thead>
<tr>
<th></th>
<th>SE/CO</th>
<th>SUL</th>
<th>NORTE</th>
<th>NE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMO</td>
<td>95,00 [R$/MWh]</td>
<td>6,48 [R$/MWh]</td>
<td>80,00 [R$/MWh]</td>
<td>7,00 [R$/MWh]</td>
</tr>
<tr>
<td>PLD</td>
<td>95,00 R$/MWh</td>
<td>12,20 R$/MWh</td>
<td>80,00 R$/MWh</td>
<td>12,20 R$/MWh</td>
</tr>
</tbody>
</table>
Planejamento da Operação

Decisão

- minimizar o custo de combustível esvaziando os reservatórios
- manter os reservatórios cheios e usar geração termoelétrica

Afluências Futuras

- altas
- baixas

Conseqüências operativas

- operação econômica
- déficit
- vertimento
- operação econômica
Problema 2: Planejamento da Operação (Geração)

Preciso atender a uma carga.

Qual o horizonte considerar?

Quais usinas vou ligar ou desligar?

Qual a melhor forma de fazer (otimizar)?
Geração Hidráulica
Geração Hidráulica

Capacidade: 14 000 MW

Barragem
- Altura: 196 m
- Extensão: 7 700 m

Área Alagada: 1 350 km²

Localização: Brasil Foz do Iguaçu, Paraguai Ciudad del Este

Rio: Paraná

Período de Construção: 1971-1982

Proprietário: Itaipu Binacional
Geração Hidráulica

ITAIPU – Abril 1981
Geração Hidráulica

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>Itaipu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbinas</td>
<td>20 (700 MW)</td>
</tr>
<tr>
<td>Potência instalada</td>
<td>14.000 MW</td>
</tr>
<tr>
<td>Produção anual</td>
<td>90 bilhões kWh/ano</td>
</tr>
<tr>
<td>Concreto utilizado</td>
<td>12,57 milhões m³</td>
</tr>
<tr>
<td>Altura</td>
<td>196 metros</td>
</tr>
<tr>
<td>Comprimento da barragem</td>
<td>7.700 metros (concreto, enrocamento e terra)</td>
</tr>
<tr>
<td>Vertedouro: capacidade de vazão</td>
<td>62.200 m³/s</td>
</tr>
<tr>
<td>Escavações</td>
<td>63,85 milhões m³</td>
</tr>
<tr>
<td>Lago</td>
<td>1.350 km²</td>
</tr>
<tr>
<td>Custo da obra</td>
<td>29 bilhões</td>
</tr>
<tr>
<td>Tempo de construção</td>
<td>1975/1991 (15 anos)</td>
</tr>
<tr>
<td>Número de pessoas reassentadas</td>
<td>4 mil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>Três Gargantas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbinas</td>
<td>26 (680 MW)</td>
</tr>
<tr>
<td>Potência instalada</td>
<td>17.680 MW</td>
</tr>
<tr>
<td>Produção anual</td>
<td>84,68 bilhões kWh/ano</td>
</tr>
<tr>
<td>Concreto utilizado</td>
<td>27,15 milhões m³</td>
</tr>
<tr>
<td>Altura</td>
<td>175 metros</td>
</tr>
<tr>
<td>Comprimento da barragem</td>
<td>2.331 metros (só concreto)</td>
</tr>
<tr>
<td>Vertedouro: capacidade de vazão</td>
<td>116.000 m³/s</td>
</tr>
<tr>
<td>Escavações</td>
<td>102,59 milhões m³</td>
</tr>
<tr>
<td>Lago</td>
<td>1.084 km²</td>
</tr>
<tr>
<td>Custo da obra</td>
<td>16 bilhões</td>
</tr>
<tr>
<td>Tempo de construção</td>
<td>1994/2009 (17 anos)</td>
</tr>
<tr>
<td>Número de pessoas reassentadas</td>
<td>1,1 milhão</td>
</tr>
</tbody>
</table>
Geração Hidráulica

Vantagens da Geração Hidráulica:

- Energia limpa e renovável
- Baixo custo de operação (água)
- Armazenamento de água potável (reservatórios)

Desvantagens da Geração Hidráulica:

- Inundações de grandes áreas
- Construção cara e demorada
- Operação dependente das condições meteorológicas
Sistema Elétrico de Potência - Geração Termoelétrica

- 320 MW
- 2 TURBINAS GN
- 1 TURBINA VAPOR
- CICLO COMBINADO
- 1/3 do fornecimento do Ceará
Geração Termelétrica

Vantagens da Geração Térmica:

- Baixo Impacto Geográfico
- Implantação próximas aos centros de consumo
- Construção mais rápida e barata em relação as UHEs

Desvantagens da Geração Térmica:

- Poluição Ambiental (Emissão de Poluentes)
- Alto custo de Operação (Consumo de Combustível)
- Maior Risco Cambial (Importação de GN)
SISTEMA INTERLIGADO DE GERAÇÃO
TIPOS DE RESERVATÓRIOS

Usinas com reservatório de regularização

Usinas a fio d’água
Vantagens de um sistema interligado:

- Operação mais econômica;
- Aproveitamento da diversidade hidrológica entre bacias;
- Ajuda mútua em casos de emergência;
- Aumento da confiabilidade do sistema.

Desvantagens de um sistema interligado:

- Problemas locais podem ser transformar em globais;
- Aumento do nível da corrente de curto circuito;
- Complexidade de representação do sistema (número de variáveis).
Outras Fontes de Energia
Fontes de Energia

Eólica
Local: Osório - RS
Três parques com capacidade para gerar 50Mw cada (150Mw no total)
500 Empregos diretos gerados
Maior Parque Eólico do Brasil
Segundo maior Parque Eólico do mundo
Total de 75 Torres modelo E-70, a mais eficiente na captação de ventos
Cada torre com 98 metros de altura e peso de 310 toneladas
Fontes de Energia

Eólica

Vantagens:

• Energia Limpa
• Pouco Impacto Ambiental

Desvantagens:

• Dependendo do vento
• Dependendo de Localização
• Necessário Backup
Fontes de Energia

Solar
Fontes de Energia

Solar

Vantagens:

• Fonte de Energia Limpa
• Mais conveniente em Sistemas Isolados

Desvantagens:

• Alto Custo
• Baixa Eficiência
• Depende do Sol
• Grandes áreas
Fontes de Energia

Biomassa

Usina de Biomassa
Casca de Cupuaçu
Biomassa

Vantagens:

• Energia Limpa
• Renovável
• Aproveita resíduos (ex: bagaço, animal)
• Safra da Cana - Estação Seca (maio a novembro)
Problema 3: Planejamento da Operação (Geração)

Outras Fontes de Energia

Como colocá-las no sistemas?

Qual a melhor localização?

Quanto gerar (quantidade ótima)?
Geração Distribuída
Links Interessantes

Empresa de Pesquisa Energética (EPE)
www.epe.gov.br

CCEE
www.ccee.org.br

Operador Nacional do Sistema - ONS
www.ons.com.br

Agência Nacional de Energia Elétrica
www.aneel.gov.br
Problemas interessantes em Engenharia Elétrica

- **Planejamento da Operação**: tem como objetivo estabelecer uma estratégia de operação, incluindo planos de emergência, para um horizonte de médio prazo (por exemplo, até 5 anos para sistemas hidrotérmicos com regulação plurianual como é o caso do Brasil). Normalmente é subdividido em um planejamento da operação energética, no qual se analisa a melhor estratégia para utilização dos recurso energéticos (água disponível e prevista para afluir aos reservatórios, em contraposição ao uso de combustível nas usinas térmicas) e um planejamento da operação elétrica, no qual são analisados os impactos das decisões energéticas, do programa de manutenção, etc., no desempenho do sistema de transmissão, visando garantir um nível adequado de confiabilidade.
Problemas interessantes em Engenharia Elétrica

- *Planejamento da Expansão*: tem como objetivo determinar, dentro de um horizonte de longo prazo (até 20 anos), os novos equipamentos a serem instalados no sistema visando atender um aumento previsto da demanda de energia elétrica. Geralmente, o planejamento é realizado de forma mais ou menos independente nos diversos blocos funcionais do sistema. No caso da geração e transmissão, existe uma integração mais forte do processo de planejamento.
Problemas interessantes em Engenharia Elétrica

A seguir são listadas algumas ferramentas e tipos de estudos utilizados nos vários estágios da engenharia de SEPs:

- Ferramentas Básicas de Análise e Simulação:
 - Cálculo de Fluxo de Potência;
 - Cálculo de Curto-Circuito;
 - Simulação da Dinâmica Eletromecânica;
 - Análise Modal;
 - Simulação de Transitórios Eletromagnéticos.

- Ferramentas de Otimização e Avaliação Probabilística:
 - Fluxo de Potência Ótimo;
 - Fluxo de Potência Probabilístico;
 - Avaliação da Confiabilidade de Sistemas de Geração, Transmissão e Distribuição;
 - Avaliação da Confiabilidade Composta de Sistemas de Geração-Transmissão.
Problemas interessantes em Engenharia Elétrica

- Estudos/Ferramentas de Planejamento da Expansão:
 - Previsão de Carga a Longo Prazo;
 - Expansão do Sistema de Geração;
 - Expansão do Sistema de Transmissão;
 - Expansão do Sistema de Distribuição.

- Estudos/Ferramentas de Planejamento da Operação:
 - Previsão de Carga a Médio Prazo;
 - Programação Hidrotérmica;
Conclusão

Envolve diversas áreas (para todos os gostos)

Estatística: previsão de carga, preços

Otimização (PO/PM): cálculo dos preços, escolha do portfólio ótimo

Economia: Regulação econômica, Tarifação

Engenharia: Geração, Distribuição, Transmissão, Regulação técnica

Oferece problemas em constante transformação (Regras mudam o tempo todo)
Qual é o nosso maior desafio?
A ENERGIA

Obrigado!
Perguntas?

Bruno Dias: bhdias@yahoo.com.br